
Consensus-based Data Statistics in Distributed Network Systems

Yifan Cai†, Jianping He‡, Wenbin Yu‡ and Xinping Guan‡

Abstract— Data has become increasingly important in net-
work systems because a lot of data is needed in new technologies
such as machine learning. To obtain statistics (e.g. maximum,
average, and distribution) in a fully distributed way with
low complexity is challenging. Existing research on consensus
algorithms can successfully obtain the max/min, average and
median in a distributed network, but little work has been done
on how to compute other statistics, especially probability density
function (PDF). In this paper, consensus-based algorithms are
proposed to obtain PDF in a fully distributed way with low
complexity. The key idea of our algorithms is to divide the
range of nodes’ values into several sections and calculate the
proportions of values in each section in a fully distributed
way. If nodes have their unique identifications (IDs), repeatedly
run max/min consensus algorithm in the network to reach the
partially max/min values and then erase them in order to reach
all values exactly once. We prove that the algorithm converges
in finite time. When nodes’ IDs are not available, the main
challenge is to solve the conflicts when two or more nodes
have the same value. We propose an asymptotically converged
algorithm to solve the problem in this scenario.

I. INTRODUCTION

With the development of computing technology, a growing
number of enterprises and institutions have begun to collect
and exploit data in network systems [1]. Data has become
increasingly important in various areas, under which condi-
tions, detailed and effective statistics such as the maximum
and average values are expected to be obtained. These statis-
tics provide an essential knowledge of data. For instance,
sensors deployed in different areas of a lake collect the local
state of water quality and cooperatively compute the statistic
information, e.g., the average, variance, to show the global
water quality of the lake [2]. Also in the field of machine
learning, an essential task is to collect a large number of
parameters to train models [3]. However, it is still far from
having an insight of the data. The maximum, minimum, and
average reveal only a little information. In order to make full
use of data, more statistics of the data should be considered.

The distribution provides the property of data. After the
distribution is obtained, not only are we able to get most
of the statistics, but also to do much further analysis of the
data (for example, after computing the proportions of each
age group, more proper advertisements can be provided on
a certain website [4]). To obtain the distribution of data,

†: School of Software Engineering, Shanghai Jiao Tong University,
Shanghai, China fyc1007261@sjtu.edu.cn

‡: The Dept. of Automation, Shanghai Jiao Tong University, and the
Key Laboratory of System Control and Information Processing, Min-
istry of Education of China, Shanghai, China jphe@sjtu.edu.cn,
yuwenbin@sjtu.edu.cn, xpguan@sjtu.edu.cn

This work was supported in part by the Natural Science Foundation of
China (NSFC) under grant 61773257, 61761136012, and 61803261.

there is a straightforward approach in centralized network
systems. That is, the central node simply collects all values
in the network and calculates the distribution. However,
in distributed networks, no nodes have access to global
information, making the problem more difficult. It is well
known that distributed networks are more promising systems
and have lots of advantages over centralized ones. Firstly,
distributed networks have better robustness, e.g., the network
will not be strongly affected when there is an attack or
power failure. Secondly, the bandwidth of each node, which
is based on the number of neighbors of nodes, will be much
smaller in distributed networks than that in centralized ones.
In addition, distributed networks are more scalable, nodes
can easily join or quit from the network without affecting
the whole construction a lot. Considering these advantages
and the importance of data statistics, it is worthwhile to
investigate how to obtain the different statistics of data in
a fully distributed way.

To calculate statistics, consensus algorithms are widely
used in distributed network systems. Plenty of research
has been conducted so far on how to compute statistics
such as the maximum and minimum [5], [6], the average
[7]–[11], the median [12], [13] in static networks. These
algorithms also work under the considerations of dynamic
topologies of networks [14]–[17], privacy concerns [5] and
so on. Nevertheless, little research has been conducted on
calculating variance and distribution. Computing distribution
is especially difficult. Firstly, it cannot be obtained by simply
calculating some parameters (e.g., µ and σ in Gaussian
distribution) because the type of distribution is not known
beforehand. Secondly, much storage will be consumed if
the protocol is simply designed to collect all values in
one node. Lastly, no global information is known to each
node, so the distribution needs to be obtained in a com-
pletely distributed way. Recently, a distributed solution for
calculating the distribution has been worked out in [18]
to estimate the distribution using stochastic approximation.
This method works when the data range is a finite set and
known to all nodes beforehand. It also records distribution for
every unique value to ensure that the algorithm is accurate.
However, in real situations, nodes do not know the range
of values beforehand. In addition, this method costs a lot
of storage space to store the distribution of every possible
value, where the number of possible values can be close to
infinity in real-life networks.

To solve these existing challenges, this paper aims to
design distributed algorithms to obtain the distribution of
data. To calculate the distribution, we find that the range
of data values, i.e. the difference between maximum and

2018 IEEE Conference on Decision and Control (CDC)
Miami Beach, FL, USA, Dec. 17-19, 2018

978-1-5386-1395-5/18/$31.00 ©2018 IEEE 4206

minimum, can be obtained from using max/min consensus.
Then, we can divide the range into a number of sections, and
then calculate the number of data values in each section to
obtain the distribution approximately. Based on this obser-
vation, we design consensus-based algorithms to obtain the
data distribution by considering different network scenarios.
In summary, the main contributions and approaches of this
paper are listed as follows.

• We proposed efficient consensus-based algorithms for
each node to calculate the variance, median, and PDF
of data in network systems. To best of our knowledge,
it is the first time to obtain the PDF statistic in a fully
distributed way within finite time.

• We proved the convergence of proposed algorithms,
and analyzed the storage cost and accuracy of them.
It is shown that the algorithms have low computation
complexity and high accuracy.

• Extensive simulations were conducted to verify the
correctness of the theoretical results and show the
efficiency of the proposed algorithms.

This paper is organized as follows: models, existing con-
sensus algorithms and problem formulation are reported in
Section II. Section III provides the main results, including
PDF calculating algorithms and the analysis of them. The
simulation results are given in Section IV, and the whole
paper is summarized in Section V.

II. PRELIMINARIES AND PROBLEM FORMULATION

A. Network Model

A distributed network system is modeled by an undirected
graph G = (V,E), where V is the set of nodes and E is
the set of edges. Denote n as the number of nodes in the
network, and d as the diameter. Denote di as the degree of
node i and Ni as the neighbor set of node i, where j ∈ Ni

if and only if (i, j) ∈ E. Assume that all operations in the
network are synchronous and the network is connected with
a fixed topology.

Let xi(k) be the state of node i in iteration k and x(k)
as the vector of values. Let xi(0) be the initial state of node
i. In iteration k, each node in the network broadcasts its
current state xi(k), and updates its state iteratively following
a designated protocol.

B. Classic Consensus Algorithms

There are mainly two types of consensus algorithms,
which are max/min consensus and average consensus algo-
rithms.

Mathematically, a maximum consensus algorithm is de-
scribed as follows,

xi(k + 1) = max{xi(k), xj(k)|i ∈ V, j ∈ Ni}

i.e., in each iteration, each node updates its value by the
maximum of itself and its neighbors. It is proved that
maximum consensus is achieved after d iterations when the
network is interconnected with a fixed topology [20].

For average consensus, at each iteration, node i updates
its value as follows,

xi(k + 1) = Wiixi(k) +
∑
j∈Ni

Wijxj(k), i ∈ V

It can be rewritten in the matrix form, which is given by
x(k + 1) = Wx(k), where W ≥ 0 is a non-negative
weight matrix, satisfying Wij = 0 for j /∈ Ni, Wii =
1−

∑
j∈Ni

Wij , W1 = 1, and 1W = 1, where 1 denotes the
vector of all ones. Clearly, W is a double stochastic matrix.

An often used weight matrix guaranteeing asymptotic
average convergence is Metropolis weight (see [15], [19]),

Wij =

1

1+max{di,dj} , {i, j} ∈ E, i 6= j;

1− 1
N

∑
di, i = j;

0, otherwise,

in which case node i only needs to know its degree di
to setup the related values. Therefore, it is widely used in
distributed network systems.

It has been proved in [19] that with Metropolis weight,
the average consensus is achieved asymptotically, i.e.,

lim
k→∞

xi(k) = x̄ (1)

C. Problem Formulation

Classic consensus algorithms solve the problem of calcu-
lating the max/min and average of values in a distributed
network system. However, the existing consensus algorithm
cannot be used to obtained the variance and distribution
directly. Thus, this paper aims to solve these problems of
computing variance and distribution by exploiting the idea
of consensus algorithms.

Considering the variance first, denoted by σ2, it has the
following property that

σ2 = E(x2)− E2(x) =
1

n

n∑
i=1

x2
i − x̄2

where E(x) represents the mathematical expectation of x.
Therefore, the problem of calculating the variance is trans-
formed into calculating the average of x and x2, which can
be calculated easily with average consensus algorithms.

As for the PDF, since the type of distribution that the
values follows is unknown, i.e. we do not know whether the
values follow normal distribution, uniform distribution, or
other ones. As a result, we cannot estimate some parameters
to get the PDF and it is hard to directly get the PDF with
closed-form of expression. As the data in the network is in
a discrete form, we aim to obtain the discrete distribution of
data in the paper.

In the following sections, we focus on the PDF estimation,
and design consensus-based algorithms to solve the chal-
lenges in distributed ways.

4207

III. MAIN RESULTS

Network systems can be classified into two categories, de-
pending on whether their nodes have IDs. In some networks,
IDs are unique values which distinguish each node from oth-
ers, for example, the MAC addresses in computer networks,
or the device IDs in sensor networks. There are also networks
without IDs, e.g., in social networks, anonymous users are
unwilling to share their IDs. Considering the difference, we
propose two different methods to calculate the PDF.

A. PDF Calculating Algorithm with IDs

In this case, the calculation of the PDF includes four key
procedures: i) using the max/min consensus to calculate the
nodes’ data values range, i.e., the difference between the
maximum and minimum; ii) dividing the range of data values
into several sections; iii) repeatedly running the max/min
consensus to calculate the maximum and minimum values
among existing uncounted data and calculate the proportions
of values in corresponding sections; and iv) excluding the
maximum and minimum values from the existing uncounted
data set with the help of ID marking technology, which
ensures that all nodes’ values are used only once.

Specifically, we divide the range of data values, denoted
by r, evenly into s (how to choose it will be discussed in Sec.
III-C) sections. Denote ρ[i, j](k) as the temporary estimate
in node i of proportion of nodes’ values in the j-th section
in iteration k, and denote Imax

i , Imin
i as the ID of max/min

stored in node i. In each cycle, nodes broadcast their values
and IDs, in order to cooperatively calculate the maximum and
minimum using the maximum/minimum consensus algorith-
m and store the sources’ IDs. Then, we introduce ID marking
technology. When several values are equal, compare the ID
and store the largest(in max consensus protocol)/smallest(in
min consensus protocol) ones. For example, nodes A and
B have the same value 100, while the IDs of nodes A and
B are 18 and 17, respectively. Then in the max consensus
procedure, nodes store the ID of node A and regard node A
as the source of maximum. Set xmax

i (t, 0) and xmin
i (t, 0) to

be the initial value of node i for each cycle t. The update
rule is shown as follows.

xmax
i (t, k + 1) = max{xmax

i (t, k), xmax
j (t, k)}, j ∈ Ni (2)

and for minimum, we have

xmin
i (t, k + 1) =min{xmin

i (t, k), xmin
j (t, k)}, j ∈ Ni (3)

Sources of the max and min values erase their values at
the end of each cycle, and the one or two sections which
contain the two values are selected and the proportions of
values in the sections are modified.

Using the properties of PDF, we have∫ β

α

f(x)dx = Pr(α < x ≤ β) (4)

Let α, β be the left and right borders of section j. Then,

ρ[i, j] = Pr(α < x ≤ β) (5)

Because the entire range r is divided into s sections,

β − α =
r

s
(6)

As ρ[i, j](k) is constant in each section, from (6), (7) and
(8), the proportion and the PDF follow the relationship that∫ β

α
f(x)dx = r

sf(x) = ρ[i, j] Therefore, the value of PDF y
of node i in section j can be computed by yi = f(x) = s

rρ[i]
The details of the above whole procedure is described in
Algorithm 1 as follows.

Algorithm 1 : PDF Calculating Algorithm with IDs
1: Run max/min consensus to get the global xmax and xmin

2: r = xmax − xmin

3: for i ∈ V do
4: xmax

i (0), xmin
i (0)← xi(0),

5: Imax
i (0), Imin

i (0)← i
6: end for
7: for i ∈ V and j ← 1 to s do
8: ρ[i, j]← 0
9: end for

10: for t← 1 to bn+1
2
c do

11: for i ∈ V do
12: Input xmax

i (t), xmin
i (t) from max/min algorithms with

IDs.
13: Sources of max and min erase their values.
14: if t = n+1

2
and n is odd then

15: ρ[i, b(xmax
i (t)− xmin)

s
r
c+ 1]+ = 1

n
16: else
17: ρ[i, b(xmax

i (t)− xmin
s
r
c+ 1]+ = 1

n

18: ρ[i, b(xmin
i (t)− xmin)

s
r
c+ 1]+ = 1

n
19: end if
20: end for
21: end for
22: Output s

r
ρ[i]

Next, we prove the finite time convergence of Algorithm
1 and obtain a theorem as follows.

Theorem 3.1: The PDF is obtained distributedly by Algo-
rithm 1 in (n− 1)bn+1

2 c iterations.
Proof: Let a be a vector of size n which satisfies

∀i ∈ [1, n), ai ≤ ai+1; ∀ai = ai+1, Ii ≤ Ii+1

In each cycle, nodes in the network run the max/min con-
sensus algorithm to get the partially max/min values. After
that, sources of the max/min erase their values. Therefore, in
cycle t, a total of (t−1) values in the front of the vector and
(t − 1) values in the end have been obtained and erased in
previous cycles. As a result, nodes obtain the t-th maximum
and t-th minimum values in cycle t, which is described as{

xmin
i (t) = at

xmax
i (t) = an−t+1

(7)

where (n−1) iterations are needed for each cycle to achieve
the max/min consensus excluding the erased ones.

As the range of each section is r
s , it is not difficult to

calculate that any value obtained, denoted by x, is in section
(x−xmin)

s
r +1. The one or two sections which xmin

i (t) and
xmax
i (t) are in then have a proportion that is 2

n (when two
values are in the same section) or 1

n (in different sections)

4208

larger. There is a special case when t = n+1
2 and n is odd,

which means that xmin
i (t) and xmax

i (t) are exactly the same
value from the same node. Steps 14 and 15 ensure that the
proportion is modified only once in this special case.

After bn+1
2 c cycles, all values have been obtained, where

(n−1) iterations are needed for max/min consensus in each
cycle. Therefore, all values are obtained after a total of (n−
1)bn+1

2 c iterations. The proportions and then the PDF are
calculated, which has completed the proof.

It is shown in Theorem 3.1 that the PDF is obtained by
each node in (n−1)bn+1

2 c iterations with Algorithm 1. The
algorithm converges in a finite time and the convergence
time is only affected by the size of network n. From (4) and
(5), the partial maximum and minimum are obtained in each
cycle, and they eventually reach the middle of the sequence
when the algorithm is stopping. Therefore, with the idea in
Algorithm 1, the median is obtain in nature. Denote M as
the median of the value, we thus have a theorem as follows,
which can be achieved using the results in [20]

Theorem 3.2: The median value is obtained in (n −
1)bn+1

2 c iterations by each node with (4) and (5), and thus

M =
1

2
(xmax

i (bn+ 1

2
c, n− 1) + xmin

i (bn+ 1

2
c, n− 1))

holds for ∀i ∈ V .
If the diameter of the network d is known to all nodes

beforehand, as the max/min consensus algorithm converges
in d iterations, only d rather than (n − 1) iterations are
required in step 12. Then, the PDF (and median) is obtained
by Algorithm 1 in bn+1

2 cd iterations. Compared to existing
work of median calculating (e.g. an algorithm with time
complexity O(nr) proposed in [12]), our method has the
advantage that it converges in a finite time (not affected by
the range of values, etc.) as long as the topology is fixed.

B. Generic PDF Calculating Algorithm

When IDs of nodes are not available, it is hard to solve
the conflicts on equal values in order to make sure that every
value is obtained and used only once. Therefore, in this
algorithm, nodes do not try to obtain every value, instead
they broadcast their temporary estimate of the distribution
and update it in each iteration. We initialize value ρ[i, j](0)
to 1 if the value of node i is in section j, otherwise it is
set to be 0. The average value of ρ[i, j] for i ∈ V is the
proportion of values which are in section j. The proportion
matrix ρ in iteration k is estimated by ρ(k + 1) = Wρ(k),
where W is a Metropolis weight matrix. From (1), it follows
that ρ asymptotically converges, i.e.

lim
k→∞

ρ[i](k) =
1

n

n∑
i=1

ρ[i](0), i ∈ V

which is the initial proportions of values in all sections. In
the same way, we have yi = f(x) = s

rρ[i], which is the
value of PDF.

The procedure is described in Algorithm 2 as follows.
Both methods in [18] and Algorithm 2 are based on

average consensus algorithm to update the values. However,

Algorithm 2 : Generic PDF Calculating Algorithm
1: Input: xi(0), num iter, W .
2: Input xmax, xmin obtained from max/min consensus algorithm-

s.
3: r = xmax − xmin

4: for i ∈ V do
5: for j ← 1 to s do
6: ρ[i, j](0)← 0
7: end for
8: ρ[i, b(xi(0)− xmin)

s
r
c+ 1](0)← 1

9: end for
10: for k ← 0 to num iter do
11: ρ(k + 1) = Wρ(k)
12: end for
13: Output s

r
ρ[i].

Algorithm 2 successfully solves the problem of the ignorance
of global value range. There is also a way to balance the
storage cost and accuracy for this algorithm, which will be
discussed in detail in the next subsection.

C. Cost of Storage and Accuracy

In both algorithms, we calculate the proportions of data
in the sections to estimate the PDF. Therefore, the value of
PDF in each section, which is a function of proportion in it,
is a constant value. However, the actual distribution in the
section can be in various forms. Thus, it is not an absolutely
accurate algorithm.

Denote δ as the precision of the data. For example, integer
values have a δ of 1. Denote ȳ as the value of PDF in a
specific section j. For convenience, let m = r

sδ , so m is
the maximum number of sub-sections that can be divided
in a section with a range of r

s . In order to reach a higher
accuracy, we divide section j further into α (a positive
integer) sub-sections. Define Errorj(α) =

1
m

∑m
i=1(ȳ−yi)

2

to be the error of algorithm in section j and the whole
cost of the algorithm to be added up by the error and the
storage cost multiplied by a tuning parameter λ, that is
Costj(α) = Errorj(α) + λStoragej(α).

We first analyze the error of the proposed algorithms.
Theorem 3.3: Considering Algorithms 1 and 2, the max-

imum error is a function of m, α and ȳ, which is given by

Errorj(α) ≤ (m− α)ȳ2

The theorem can be proved by finding out the extreme
situations and calculate the errors of them. Due to limited
space, the proof is not listed here.

From Theorem 3.3, it is shown that the maximum error
in a specific section j is related to λ, m, α and ȳ. The
only value can be changed is α because m and ȳ depend
on the values, and λ is the presupposed tuning parameter.
If the number of sections is set to its maximum, i.e., let
α = m, we have Errorj(α) = 0, which is in line with
our intuition. More generally, Errorj(α) decreases when α
increases, which means that a larger α leads to a smaller
error of the algorithms. However, a larger α also costs more
storage. Denote φ as the storage needed for each number. For

4209

Algorithm 1, node i should keep the current state of α sub-
sections in section j, so a space of αφ is needed. Therefore,
we obtain a theorem as follows.

Theorem 3.4: For Algorithm 1, the possible maximum
error and storage cost make up the upper bound of total
cost of the in a specific section j, which is

Costj(α) ≤ (m− α)ȳ2 + αλφ

= (λφ− ȳ2)α+mȳ2

For Algorithm 2, in each iteration, node i receives pro-
portions in section j from its neighbors with a size of αφ,
leading to storage space of αdiφ consumed. Therefore, we
propose a theorem as follows.

Theorem 3.5: For Algorithm 2, the possible maximum
error and storage cost make up the upper bound of total
cost of the in a specific section j, which is

Costj(α) ≤(m− α)ȳ2 + λαdiφ

=(λdiφ− ȳ2)α+mȳ2

From Theorem 3.4 and 3.5, it is shown that whether
to choose a larger or a smaller α depends on the tuning
parameter λ, unit storage cost φ, degree di (for Algorithm
2) and value of PDF ȳ. When di, φ are expected to be large
and ȳ is expected to be small, a smaller α is better. On the
contrary, when there are small di, φ and large ȳ, a larger α
is recommended.

IV. NUMERICAL SIMULATIONS

In this section, we conduct some numerical simulations to
illustrate the correctness and performance of our algorithms.

We suppose that there is an area of a × a, and nodes
are randomly placed in this area. All nodes share the same
connectivity radius l, i.e. if and only if the distance between
two nodes is not larger than l, then they can successfully
receive information from each other. We also make sure that
the graph is interconnected.

Consider an undirected graph G with n = 40, a = 100
and l = 20. The data in the network are generated following
standard normal distribution. Figure 1 shows the difference
between the temporary variance obtained by each node and
the actual variance of values. It is shown that the difference
gradually decreases and finally reaches zero as the number
of iterations increases. From the graph we can see that the
algorithm asymptotically converges, and after around 300
iterations there is almost no error.

Figure 2 shows the partial maximum and minimum values
in the network when running Algorithm 1. The two values
come closer to each other, and after 780 iterations, the
temporary maximum reaches the minimum, so all values
in the network have been obtained. The result accords with
Theorem 3.1 that the algorithm converges in (n − 1)bn+1

2 c
iterations.

In Fig. 3, we show the result of generic PDF calculating
algorithm. Define the error in each node at iteration k to
be e[i](k) = ‖ρ[i](k) − ρ[i](∞)‖2. Figure 3 shows the
relationship between e[i](k) and k. From the graph, it is
shown that as the number of iterations increases, the error

0 100 200 300 400 500 600

Iteration Number k

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

σ2 i
(k
)−

σ2 i
(∞

)

Error vs. Iteration Number of Variance Calculating Algorithm.

Fig. 1. Error in each node vs. iteration number.

0 100 200 300 400 500 600 700

Iteration Number t(n−1)+ k

−1

0

1

2

3

xm
ax

i
(t,

k)
 a

nd
 x

m
in

i
(t,

k)

Partial Maximum and Minimum vs. Iteration Number
 of Algorithm 1

xmax
i (t, k)
xmin
i (t, k)

Fig. 2. A typical result of PDF calculating algorithm with IDs.

in each node decreases. The algorithm converges eventually
after around 400 iterations with almost zero error.

Figure 4 shows the temporary value of PDF in a specific
node when k = 1, 10 and 100. It is shown that the distance
between the estimate PDF and the actual one gradually
decreases with the increase of k.

We also run simulations when keeping n and a unchanged,
and choose different l to generate the network topologies,
where we make sure that the network is interconnected.
Clearly that if l is larger, nodes will be more likely to
have more neighbors to exchange information with, i.e.
the network has better connectivity. In this simulation, we
assume that the diameter d is known to all nodes beforehand.
Therefore, algorithm 1 therefore converges in bn+1

2 cd itera-
tions. We assume that Algorithm 2 has converged in iteration
k if and only if all nodes’ error e[i](k) is less than 0.025. For
each different l, we randomly generate 1000 unique network
topologies and record the number of iterations needed for
convergence. The result is shown in Fig. 5. It is shown
that both algorithms have a larger convergence rate when
l increases, i.e. the network has better connectivity. The
converges rate of Algorithm 2 is more easily affected by the
connectivity than that of Algorithm 1. Therefore, Algorithm
1 is preferred when network connectivity is bad, while
Algorithm 2 is preferred when there is good connectivity
or IDs are not available in the network.

Figure 6 shows the results when PDF is calculated in 5, 20
or 100 sections. Clearly that the 100 sections one provides
the detailed distribution while the 5 sections one shows the
roughest distribution. In application, we may choose a value
(e.g., 20 in this setting) to balance the accuracy and the

4210

0 100 200 300 400 500 600 700 800

Iteration Number k

0

1

2

3

4

5

6

7

e[
i](
k)

Error vs. Iteration Number of Algorithm 2

Fig. 3. Error vs. iteration number of Algorithm 2.

−3 −2 −1 0 1 2 3

x

0.0

0.2

0.4

0.6

0.8

1.0

PD
F

f(x
)

The Temporary Value of PDF in a Specific Node
k=1
k=10
k=100
The Actual PDF

Fig. 4. The temporary PDF in a specific node.

generality.

V. CONCLUSIONS

In this paper, we proposed two algorithms to compute the
distribution of all values of nodes in a distributed way, con-
sidering two network conditions (nodes with or without IDs),
respectively. For the nodes with IDs, the PDF of values can
be obtained in O(n2) (or O(nd) when d is known) iterations
time with an error of no more than (m−1)ȳ2 in each section
using the proposed algorithm. For the nodes without IDs,
it is proved that the proposed algorithm can asymptotically
converge, and has the same convergence rate as average
consensus algorithm. Compare with existing algorithms, the
proposed algorithms are with low time complexity and can
collect a lot more information. We also analyzed the error
and storage cost of both algorithms and obtained the upper
bounds of them. Simulations were conducted to demonstrate
the effectiveness of the proposed algorithms.

REFERENCES

[1] Chen, M., Mao, S. and Liu, Y., “Big data: A survey”. Mobile Networks
and Applications, 19(2): 171-209, 2014.

[2] Wu, X., Zhu, X., Wu, G. Q., Ding, W. “Data mining with big data”.
IEEE Trans. Knowledge and Data Engineering, 26(1): 97-107, 2014.

[3] Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J. “Distributed op-
timization and statistical learning via the alternating direction method
of multipliers”. Foundations and Trends in Machine Learning, 3(1):
1-122, 2011.

[4] Reilly, J.P. and Hassett, G.P., Pointcast, Inc. “Information and adver-
tising distribution system and method”. U.S. Patent 5,740,549, 1998.

[5] Duan, X., He, J., Cheng, P., Mo, Y., Chen, J. “Privacy preserving
maximum consensus”. In Proc. IEEE CDC, 2015.

[6] J. He, P. Cheng, L. Shi, J. Chen and Y. Sun. “Time synchronization in
WSNs: A maximum-value-based consensus approach”. IEEE Trans.
on Automatic Control, 2014, 59(3):660-675.

20 25 30 35 40

Connectivity Radius

100

200

300

400

500

600

Ite
ra

tio
ns

 C
os

t f
or

 C
on

ve
rg

en
ce

Convergence Time vs. Connectivity
Algorithm 1
Algorithm 2

Fig. 5. The relationship between convergence time and connectivity.

−3 −2 −1 0 1 2 3

x

0.0

0.1

0.2

0.3

0.4

0.5

0.6

PD
F

f(x
)

PDF with Different Number of Sections Divided
5 Sections
20 Sections
100 Sections

Fig. 6. PDF with different number of sections.

[7] Olshevsky, A., Tsitsiklis, J. N. “Convergence speed in distributed
consensus and averaging”. SIAM Journal on Control and Optimization,
48(1), 33-55, 2009.

[8] Xiao, L., Boyd, S. “Fast linear iterations for distributed averaging”.
Systems and Control Letters, 53(1), 65-78, 2004.

[9] J. He, P. Cheng, L. Shi, and J. Chen. SATS: Secure average-consensus-
based time synchronization in wireless sensor networks. IEEE Trans.
on Signal Processing, 2013, 61(24): 6387-6400.

[10] Yadav, V., Salapaka, M. V. “Distributed protocol for determining when
averaging consensus is reached”. Annual Allerton Conf, 2007.

[11] J. He, L. Cai, P. Cheng, J. Pan and L. Shi. “Distributed privacy-
preserving data aggregation against dishonest nodes in network sys-
tems”. IEEE Internet of Things Journal, DOI:10.1109/JIOT.2018.2834
544, 2018

[12] Franceschelli, M., Giua, A. and Pisano, A. “Finite-time consensus on
the median value with robustness properties”. IEEE Trans. Automatic
Control, 62(4), pp.1652-1667, 2017.

[13] Liu, H. and Chen, J. “Distributed privacy-aware fast selection algorith-
m for large-scale data”. IEEE Trans. Parallel and Distributed Systems,
29(2): 365-376, 2018.

[14] Sun, Y.G., Wang, L. and Xie, G. “Average consensus in networks of
dynamic agents with switching topologies and multiple time-varying
delays”. Systems and Control Letters, 57(2), pp.175-183, 2008.

[15] Xiao, L., Boyd, S. and Lall, S. “Distributed average consensus with
time-varying metropolis weights”. Automatica, 2006.

[16] Olfati-Saber, R. and Murray, R.M. “Consensus problems in networks
of agents with switching topology and time-delays”. IEEE Trans.
Automatic Control, 49(9): 1520-1533, 2004.

[17] Y. Cao, W. Yu, W. Ren, and G. Chen. “An overview of recent progress
in the study of distributed multi-agent coordination”. IEEE Trans.
Industrial Informatics, 9(1): 427-438, 2013.

[18] Sarwate, A.D. and Javidi, T. “Distributed learning of distributions via
social sampling.” IEEE Trans. Automatic Control, 60(1): 34-45, 2015.

[19] Xiao, L., Boyd, S. and Lall, S. April. “A scheme for robust distributed
sensor fusion based on average consensus”. In Proc. IEEE IPSN, 2005.

[20] Iutzeler, Franck et al. “Analysis of max-consensus algorithms in
wireless channels.” IEEE Trans. on Signal Processing, 60 (2012):
6103-6107.

4211

